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Abstract: In this paper we introduce a new procedure called α -Discounting Method for Multi-Criteria 
Decision Making (α-D MCDM), which is as an alternative and extension of Saaty’s Analytical Hierarchy 
Process (AHP). It works for any set of preferences that can be transformed into a system of homogeneous 
linear equations. A degree of consistency (and implicitly a degree of inconsistency) of a decision-making 
problem are defined. α-D MCDM is generalized to a set of preferences that can be transformed into a 
system of  linear and/or non-linear homogeneous and/or non-homogeneous equations and/or inequalities. 
Many consistent, weak inconsistent, and strong inconsistent examples are given). 
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1. INTRODUCTION 
 

α-Discounting Method for Multi-Criteria 
Decision Making (α-D MCDM) is an 
alternative and extension of Saaty’s Analytical 
Hierarchy Process (AHP). It works not only 
for preferences that are pairwise comparisons 
of criteria as AHP does, but for preferences of 
any n-wise (with n ≥ 2) comparisons of criteria 
that can be expressed as linear homogeneous 
equations. 

The general idea of α-D MCDM is to 
assign null-null positive parameters α1, α2, …, 
αn to the coefficients in the right-hand side of 
each preference that diminish or increase them 
in order to transform the above linear 
homogeneous system of equations which has 
only the null-solution, into a system having. 
After finding the general solution of this 
system, the principles used to assign particular 
values to all parameters α’s is the second 
important part of α-D, yet to be deeper 
investigated in the future. 

In the current paper we herein propose the 
Fairness Principle, i.e. each coefficient should 
be discounted with the same percentage (we 
think this is fair: not making any favoritism or 
unfairness to any coefficient), but the reader 

can propose other principles. For consistent 
decision-making problems with pairwise 
comparisons, α-Discounting Method together 
with the Fairness Principle give the same 
result as AHP. But for weak inconsistent 
decision-making problem, α -Discounting 
together with the Fairness Principle give a 
different result from AHP. 

α-Discounting/Fairness-Principle together 
give a justifiable result for strong inconsistent 
decision-making problems with two 
preferences and two criteria; but for more than 
two preferences with more than two criteria 
and the Fairness Principle has to be replaced 
by another principle of assigning numerical 
values to all parameters α’s. Since Saaty’s 
AHP is not the topic of this paper, we only 
recall the main steps of applying this method, 
so the results of α-D MCDM and of AHP 
could be compared. AHP works for only for 
pairwise comparisons of criteria, from which a 
square Preference Matrix, A (of size n× n), is 
built. Then one computes the maximum 
eigenvalue λmax of A and its corresponding 
eigenvector.  

If λmax is equal to the size of the square 
matrix, then the decision-making problem is 
consistent, and its corresponding normalized 
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eigenvector (Perron-Frobenius vector) is the 
priority vector. If λmax is strictly greater than 
the size of the square matrix, then the 
decision-making problem is inconsistent. One 
raise to the second power matrix A, and again 
the resulted matrix is raised to the second 
power, etc. obtaining the sequence of matrices 
A2, A4, A8, …, etc.  

In each case, one computes the maximum 
eigenvalue and its associated normalized 
eigenvector, until the difference between two 
successive normalized eigenvectors is smaller 
than a given threshold. 

The last such normalized eigenvector will 
be the priority vector. 

Saaty defined the Consistency Index as: 

1-n
n - (A)λCI(A) max=             (1) 

Where n is the size of the square matrix A. 
 
2. α-DISCOUNTING METHOD FOR 

MULTI-CRITERIA DECISION MAKING 
(α-D MCDM) 

 
2.1. Description of α-D MCDM 
The general idea of this paper is to 

discount the coefficients of an inconsistent 
problem to some percentages in order to 
transform it into a consistent problem. 

Let the Set of Criteria be C = {C1, C2, …, 
Cn}, with n ≥ 2, and the Set of Preferences be 
P = {P1, P2, …, Pm}, with m ≥ 1. 

Each preference Pi is a linear 
homogeneous equation of the above criteria 
C1, C2, …, Cn: 

)C,...,C,(C fP n21i =             (2) 
We need to construct a basic belief 

assignment (bba): 
[0,1]C:m →              (3) 

such that m(Ci) = xi , with 0 ≤ xi ≤ 1, and 

1)m(x
n

11
i =∑

=

             (4) 

We need to find all variables xi in 
accordance with the set of preferences P. Thus, 
we get an nm ×  linear homogeneous system 
of equations whose associated matrix is     
A = (a

     
ij), 1 ≤ i ≤ m and 1 ≤ j ≤ n.  

 30 

In order for this system to have non-null 
solutions, the rank of the matrix A should be 
strictly less than n. 

2.2. Classification of linear decision-
making problems 

a) We say that a linear decision-making 
problem is consistent if, by any substitution 
of a variable xi from an equation into another 
equation, we get a result in agreement with all 
equations. 

b) We say that a linear decision-making 
problem is weakly inconsistent if, by at least 
one substitution of a variable xi from an 
equation into another equation, we get a result 
in disagreement with at least another equation 
in the following ways: 

⎭
⎬
⎫

⎩
⎨
⎧

≠>⋅=
>⋅=

122j2i

j1i

kk1,k,xkx
1k,xkx

(WD1)         (5) 

or  

⎭
⎬
⎫

⎩
⎨
⎧

≠<<⋅=
<<⋅=

122j2i

j1i

kk1,k,0xkx
1k,0xkx

(WD1)      (6) 

or 
{ }1k,xkxWD(3) ii ≠⋅=             (7) 

(WD1) - (WD3) are weak disagreements, 
in the sense that for example a variable x > y 
always, but with different ratios (for example: 
x = 3y and x = 5y). All disagreements in this 
case should be like (WD1) - (WD3). 

c) We say that a linear decision-making 
problem is strongly inconsistent if, by at 
least one substitution of a variable xi from an 
equation into another equation, we get a result 
in disagreement with at least another equation 
in the following way: 

⎭
⎬
⎫

⎩
⎨
⎧

⋅=
⋅=

j2i

j1i

xkx
xkx

(SD4)             (8) 

with 0 < k1 < 1 < k2 or 0 < k2 < 1 < k1 (i.e. 
from one equation one gets xi < xj while from 
the other equation one gets the opposite 
inequality: xi < xj). At least one inconsistency 
like (SD4) should exist, no matter if other 
types of inconsistencies like (WD1)-(WD3) 
may occur or not. Compute the determinant of 
A. 

a) If det(A) = 0, the decision problem is 
consistent, since the system of equations is 
dependent. It is not necessarily to parameterize 
the system. (In the case we have 
parameterized, we can use the Fairness 
Principle - i.e. setting all parameters equal     
α1 = α2 = … = αp = α > 0). Solve this system; 
find its general solution. Replace the 
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parameters and secondary variables, getting a 
particular solution. Normalize this particular 
solution (dividing each component by the sum 
of all components). Wet get the priority vector 
(whose sum of its components should be 1). 

b) If det(A) ≠ 0, the decision problem is 
inconsistent, since the homogeneous linear 
system has only the null-solution. 

b1) If the inconsistency is weak, then 
parameterize the right-hand side coefficients, 
and denote the system matrix A(α). Compute 
det(A(α)) = 0 in order to get the parametric 
equation. If the Fairness Principle is used, set 
all parameters equal, and solve for α > 0. 
Replace α in A(α) and solve the resulting 
dependent homogeneous linear system. 
Similarly as in a), replace each secondary 
variable by 1, and normalize the particular 
solution in order to get the priority vector. 

b2) If the inconsistency is strong, the 
Fairness Principle may not work properly. 
Another approachable principle might by 
designed. Or, get more information and revise 
the strong inconsistencies of the decision-
making problem. 

 
2.3. Comparison between AHP and α-D 

MCDM: 
a) α-D MCDM’s general solution includes 

all particular solutions, that of AHP as well; 
b) α-D MCDM uses all kind of 

comparisons between criteria, not only 
pairwise comparisons; 

c) for consistent problems, AHP and α-D 
MCDM/Fairness-Principle give the same 
result; 

d) for large inputs, in α-D MCDM we can 
put the equations under the form of a matrix 
(depending on some parameters alphas), and 
then compute the determinant of the matrix 
which should be zero; after that, solve the 
system (all can be done on computer using 
math software); the software such as 
MATHEMATICA and APPLE for example 
can do these determinants and calculate the 
solutions of this linear system; 

e) α-D MCDM can work for larger classes 
of preferences, i.e. preferences that can be 
transformed in homogeneous linear equations 
or in non-linear equations and/or inequalities - 
see more below. 

2.4. Generalization of α -D MCDM 
Let each preference be expressed as a 

linear or non-linear equation or inequality. All 
preferences together will form a system of 
linear/non-linear equations/inequalities, or a 
mixed system of equations and inequalities.  
Solve this system, looking for a strictly 
positive solution (i.e. all unknowns’ xi > 0). 
Then normalize the solution vector. If there are 
more such numerical solutions, do a 
discussion: analyze the normalized solution 
vector in each case. If there is a general 
solution, extract the best particular solution.  If 
there is no strictly positive solution, 
parameterize the coefficients of the system, 
find the parametric equation, and look for 
some principle o apply in order to find the 
numerical values of the parameters α‘s. A 
discussion might also be involved. We may get 
undetermined solutions. 

 
3. DEGREES OF CONSISTENCY AND 

INCONSISTENCY IN α-D MCDM/ 
FAIRNESS-PRINCIPLE 

 
For α-D MCDM/Fairness-Principle in 

consistent and weak consistent decision-
making problems, we have the followings: 

a) If 0 < α < 1, then α is the degree of 
consistency of the decision-making problem, 
and β = 1 – α is the degree of inconsistency of 
the decision-making problem. 

b) If α > 1, then 1/α is the degree of 
consistency of the decision-making problem, 
and β = 1 – 1/α is the degree of inconsistency 
of the decision-making problem. 

 
4. PRINCIPLES OF α-D MCDM  

(SECOND PART) 
 
a) In applications, for the second part of α -

D Method, the Fairness Principle can be 
replaced by other principles.  

Expert’s Opinion. For example, if we 
have information that a preference’s 
coefficient should be discounted twice more 
than another coefficient (due to an expert’s 
opinion), and another preference’s coefficient 
should be discounted a third of another one, 
then appropriately we set for example:            
α1 = 2α2 and respectively α3 = (1/3)α4, etc. in 
the parametric equation. 
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b) For α-D/Fairness-Principle or Expert’s 
Opinion. 

Another idea herein is to set a threshold of 
consistency tc (or implicitly a threshold of 
inconsistency ti). Then, if the degree of 
consistency is smaller than a required tc, the 
Fairness Principle or Expert’s Opinion 
(whichever was used) should be discharged, 
and another principle of finding all parameters 
α’s should be designed; and similarly if the 
degree of inconsistency is bigger than ti. 

c) One may measure the system’s accuracy 
(or error) for the case when all m preferences 
can be transformed into equations; for 
example, preference Pi is transformed into an 
equation fi(x1, x2, …, xn) = 0; then we need to 
find the unknowns x1, x2, …, xn such that: 

∑
=

=
m

1i
n21in21 )x,...,x,(xf)x,...,x,e(x  

is minimum              (9) 
where “e” means error. 

Calculus theory (partial derivatives) can be 
used to find the minimum (if this does exist) of 
a function of n variables, , with 
e: R

)x,...,x,e(x n21

+
n →R+. For consistent decision-making 

problems the system’s accuracy/error is zero, 
so we get the exact result. We prove this 
through the fact that the normalized priority 
vector [a1 a2 … an], where xi = ai > 0 for all i, 
is a particular solution of the system fi (x1, x2, 
…, xn) = 0 for i = 1, 2, …, m; therefore: 

∑∑
==

==
m

1i

m

1i
n21i 00)a,...,a,(af          (10) 

But, for inconsistent decision-making 
problems we find approximations for the 
variables. 

 
5. EXTENSION OF α-D MCDM  

(NON-LINEAR α-D MCDM) 
 
It is not difficult to generalize the α-D 

MCDM for the case when the preferences are 
non-linear homogeneous (or even non-
homogeneous) equations. 

This non-linear system of preferences has 
to be dependent (meaning that its general 
solution - its main variables - should depend 
upon at least one secondary variable). If the 
system is not dependent, we can parameterize 
it in the same way. Then, again, in the second 

part of this Non-Linear α-D MCDM we assign 
some values to each of the secondary variables 
(depending on extra-information we might 
receive), and we also need to design a 
principle which will help us to find the 
numerical values for all parameters. We get a 
particular solution (such extracted from the 
general solution), which normalized will 
produce our priority vector. Yet, the Non-
Linear α-D MCDM is more complicated, and 
depends on each non-linear decision making 
problem. Let’s see some examples. 

 
6. CONSISTENT EXAMPLE 1 

 
6.1. Let the Set of Preferences be: {C1, C2, 

C3}, and The Set of Criteria be: 
1. C1 is 4 times as important as C2. 
2. C2 is 3 times as important as C3. 
3. C3 is one twelfth as important as C1. 
Let m(C1) = x , m(C2) = y , m(C3) = z. 
The linear homogeneous system associated 

to this decision-making problem is: 

⎪
⎩

⎪
⎨

⎧

=
=
=

12/xz
z3y
y4x

                                             (11) 

whose associated matrix A1 is: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

1012/1
310

041
                      (12) 

Whence det(A1) = 0, so the DM problem is 
consistent. 

Solving this homogeneous linear system 
we get its general solution that we set as a 
vector [12z 3z z], where z can be any real 
number (z is considered a secondary variable, 
while x = 12z and y = 3z are main variables). 
Replacing z = 1, the vector becomes              
[12 3 1], and then normalizing (dividing by                 
12 + 3 + 1 = 16 each vector component) we 
get the priority vector: [12/16 3/16 1/16], so 
the preference will be on C1. 

 
6.2. Using AHP, we get the same result. 
The preference matrix is: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

13/112/1
314/1

1241
                      (13) 
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Whose maximum eigenvalue is λmax = 3 and 
its corresponding normalized eigenvector 
(Perron-Frobenius vector) is [12/16 3/16 1/16]. 
 

6.3. Using Mathematica 7.0 Software: 
Using MATHEMTICA 7.0 software, we 

graph the function: 
h(x,y) = |x – 4y| + |3x + 4y – 3| + |13x + 12y –12|, 

with x,y∈  [0,1], which represents the 
consistent decision-making problem’s 
associated system: x/y = 4, y/z = 3, x/z = 12, 
and x + y + z = 1, x > 0, y > 0, z > 0. 

In[1] := Plot3D[Abs[x – 4y] + Abs[3x + 4y 
– 3]  + Abs[13x + 12y–12], {x,0,1}, {y,0,1}] 

 

 
 

The minimum of this function is zero,    
and occurs for x = 12/16, y = 3/16. If we    
consider the original function of three 
variables associated with h(x,y) we have: 
H(x,y, z) = |x – 4y| + |y – 3z| + |x – 12z|,          
x + y + z = 1, with x,y,z ∈  [0,1], we also get 
the minimum of H(x,y,z) being zero, which 
occurs for x = 12/16, y = 3/16, z = 1/16. 

 
7. WEAK INCONSISTENT EXAMPLE 

WHERE AHP DOESN’T WORK 
 
The Set of Preferences is: {C1, C2, C3}. 
 
7.1. Weak Inconsistent Example 2 
7.1.1. α-D MCDM method 
The Set of Criteria is: 
1. C1 is 2 times as important as C2 and 3 

times as important as C3 put together. 
2. C2 is half as important as C1. 
3. C3 is one third as important as C1. 
Let m(C1) = x, m(C2) = y, m(C3) = z. 

⎪
⎩

⎪
⎨

⎧

=
=

+=

3/xz
2/xy

z3y2x
                                      (14) 

AHP cannot be applied on this example 
because of the form of the first preference, 
which is not a pairwise comparison. If we 
solve this homogeneous lin

ations as it is we get x = y =
ociated matrix is: 

but the null solution is not acceptable sinc
sum x + y + z has to be 1. Let’s paramet
each right-hand side coefficient and get the 
general solution of the above system: 

ear system of 
 z = 0, since its equ

ass

01
103/1
012/1
321

≠−=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−
                 (15) 

e the 
rize e

⎪⎩
⎪
⎪
⎨

= xaz

x
2

y

4

⎪⎪ =
a3  

⎪
⎧

+=

3

z3ay2ax 21

where: α1, α2, α3, α4 
 get       

 = 2 1 3 2 4

231

(16) 
 

(18) 

> 0. 
Replacing (17) and (18) in (16) we
  α (α x/2) + 3 α (α x/3),  x

whence 
14 =αα+αα (paramet

l solution of the system is: 
ric equation) (19) 

The genera

⎪
⎩ 3

whence the priority vector 

[

⎪
⎧ = xαy 3

⎨
= xαz

2
4

                       (20) 

,x
2
α,x x ]x

3
α4 → [ ,1 x

2
, α ]

3
4α          (21) 

Fairness Principle: discount all coefficients 

α
with the same percentage: so, replace             

 α3 = α4 = > 0 in (19) we get         
2 2

1 = α2 = α

α  +α  = 1, whence 
2
2

=α . Priority vector 

becomes: ⎢
⎣

⎡
,

4
2,1 x

⎥
⎦

⎤
6
2  

and normalizing it: 

(17) 
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[ ]

zyx
C3C2C1

0.14831.222460.62923
         (22) 

Preference will be on C1, the largest vector 
com  Let’s verify it: x/y

0

 34 

ponent. ≅ 0.35354 
instead of 0.50, i.e. 22 = 70.71% of the 
ori   

 original. 1.41421y + 
2.1

 |x – 2y| + |4x + 3y – 3|, 
wit        

lem’s 
associated system: x – 2y – 3z = 0, x – 2y = 0, 
x – 3z = 0, and x + y + z = 1, x > 0, y > 0,       
z > 0. by solving z = 1 – x – y and replacing it 
in G(x,y,z) = |x – 2y – 3z| + |x – 2y| + |x – 3z| 
with x > 0, y > 0, z > 0. 

In[2] := Plot3D[Abs[4x – y – 3] + Abs[x – 
2y] + Abs[4x + 3y – 3],{x,0,1},{y,0,1}] 

ginal. z/x≅ 0.23570 instead of 0.33333,   
i.e. 70.71% of the x≅

2132z instead of 2y + 3z, i.e. 70.71% of 2 
respectively 70.71% of 3. So, it was a fair 
discount for each coefficient. 

 
7.1.2. Using Mathematica 7.0 Software: 
Using MATHEMTICA 7.0 software, we 

graph the function: 
g(x,y) = |4x – y – 3| +
h x,y∈[0,1], which represents the  

weak inconsistent decision-making prob

 

 
 

Then find the minimum of g(x,y) if any: 
In[3] := FindMinValue[{Abs[4x – y – 3] + 

Abs[x – 2y] + Abs[4x + 3y – 3], x + y ≤ 1,   
x > 0, y > 0}, {x,y}] 

The following result is returned:  
Out[3] :=

   

 0.841235. 

or complementary 

 0.137702, 0.0270028}, 
is returned. 

 

7.1.3. Matrix Metho  
Discounting. 

The determinant of the homogeneous linear 
system (16), (17), (18) is: 

FindMinValue::eit: The algorithm does   
not converge to the tolerance of 
4.806217383937354`*^-6 in 500 iterations. 
The best estimated solution, with feasibility 
residual, KKT residual, 

residual of {0.0799888,

d of using α -

10
3
1

4α−

or 1

01
2 3α−     1

321 21 α−α−

                 (23) 

4231 =αα+αα (parametric equation). 
The determinant has to be zero in order for 

the system to h ve non null s
The rank of the matrix is 2. 
So, we find two variables, for example it is 

 x: 

a - olutions. 

easier to solve for y and z from the last two 
equations, in terms of

⎪
⎩

= xα
3
1z 4

⎪
⎧ = xα

2
1y 3

⎨                       (24) 

and the procedure follows the same steps as in 
the

n order to study 
various situations. 

 
7.2. Weak Inco tent E

is more weakly incons
1. Same as in Example 1. 
2. C2 is 4 times as important as C1. 
3. Same as in Example 1. 

 previous one. 
Let’s change Example 1 i

nsis xample 3, which 
istent than Example 2. 

⎪
⎪
⎩

= x
3
αz 4

⎪
⎪
⎨

⎧

=
+=

y4αy
z3α2αx

3

21

                      (25) 

x
3
α3αx)(4α2αx 4

231 ⎟
⎠
⎞

⎜
⎝
⎛+=  

)ααα(8αx1 4231 +=⋅  
1ααα8α 4231 =+ (parametric equation)  

(26) 
α1 = α2 = α3 = α4 = > 0 α

3
1α19α2 ⇒= =  
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⎥⎦⎢⎣⎥⎦⎢⎣ 3
4α1x

3
x4x 4

3
4

3      (27) ⎤α ⎡→⎤⎡ αα

⎥
⎤

⎢
⎡→⎥

⎤
⎢
⎡

9
1

9
12

9
9

9
1

3
41  

⎣ ⎦⎣⎦

normalized: ⎥⎦
⎤

⎢⎣
⎡

22
1

22
12

22
9 , 1.333

x
y
=  

instead   of   4;  0.111
x
=   insz tead  of  0.3333; 

x =
Each coefficient was reduced at 1/3           

(= 33.33%). The bigger is the inconsistency  
(β →1), the bigger is the discounting (α →0). 

 
7.3. Weak Inconsistent Example 4, which 

is even more inconsistent than Example 3. 
e as in Example 1. 
e as in Ex

=
=

x5αz
xαy

4

3                                  (28) 

α+=  

4231 +  
whence 

31 =+ (parametric equation) (29) 
α1 = α  α4 = α > 0,23 α2 = 1,    

α =

 0.667y + z1⋅ instead of 2y + 3z. 

 
 

1. Sam
2. Sam ample 2. 

s important as C1. 3. C3 is 5 times a
⎧ +=

4
z3αy2αx 21

⎪
⎩

⎪
⎨

( )x53αx)(4α2αx 4231

α(8αx1 =⋅ )αα15

1αα15α8α 42

2 = α3 =         
2323  

[ ] ⎥
⎤

⎢
⎡

→αα
2352341541  

⎦⎣ 232343

d: [ 34763.0Normalize  ]36243.028994.0

0.83405y
≅  instead of 4, i

x
.e. reduced at 

=2323 20.85%; 

1.04257≅ instead of 5; 
x

 

z

x = 0.41703y +0.62554 instead of 2x +
ient was reduced 

3y. 
at Each coeffic

≅=α 2323 20.85%. 
 

7.4. Consiste
When we get α =1, we have a consistent 

problem. 

3. C2 is one sixth as important as C3. 
 is: 

= 6/xz
 

     7.4.1. F olving this System 
Replacing the second and third equations of 

this

nt Example 5. 

Suppose the preferences: 
1. Same as in Example 1; 
2. C2 is one fourth as important as C1; 

The system

⎪
⎨ = 4/xy                                          (30) 

irst Method of S

⎩

⎪
⎧ += z3y2x

 system into the first, we get: 

x
2
x

2
xxx
+=⎞⎛+⎞⎛=

6
3

4
2x =⎟

⎠
⎜
⎝

⎟
⎠

⎜
⎝

, 

which is an identity (so, no contradiction). 
General solution: ⎥⎦

⎤
⎢⎣
⎡

6
x

4
xx . Priority vector: 

⎥⎦64
⎤

⎢⎣
⎡ 111 . Normalized is: ⎥⎦⎣ 171717

7.4.2. Se

⎤
⎢
⎡ 2312  

 

cond Method of Solving this 
m. Let’s parameterize:Syste  

⎪⎩ 6
⎪
⎪

⎪⎪
⎪

⎨

⎧

=

=

+=

xαz
4
xαy

z3αy2αx

4

3

21

                      (31) 

Replacing the last two equations into the 
first we get: 

x
2
ααx

2
ααx

6
α3αxα2αx 423143

1 +=⎟
⎠
⎞

⎜
⎛+⎟

⎞
⎜
⎛=

4 3
⎝⎠⎝

x
2

ααααx1 4231 ⋅
+

=⋅  

whence 
2

αα1 αα 4231 +
=  or 4231 αααα + = 2. 

airness principle:  
 α > 0, then 2α

Consider the f
α1 = α2 = α3 = α4 =

he

2 = 2, α = ±1, 
but we take only the positive value α =1 (as 
expected for a consistent problem). Let’s 

c ck: 
417/12x

== , exa1 ctly as in the 

original system; 

17/3y

612
 2y + 3z since 

117/2z
17/x

== , exactly as   

in the original system; x =

⎟
⎠

⎜
⎝

+⎟
⎠

⎜
⎝

=
6

3
4

2x ; hence all coefficients were ⎞⎛⎞⎛ xx

left at α = 1 (= 100%) of the original ones. No 
discount was needed. 
 

7.5. General Example 6 
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Let’s consider the g

 36 

eneral case: 

= xαz 4

                     (32) 

where α , α2, α3, α4 > 0. Let’s parameterize: 

=
+

xα
zααyαα

3

2211

wit . 
ations 

into

ααααx 42423131=
Whence 

 fairness principle:  

⎪
⎩

⎪
⎨

⎧
=

+=
xαy

zαyαx

3

21

 

1

⎪
αy 3                      (33) 

⎩ = xααz 44

⎪
⎨

⎧ =x

h α1, α2, α3, α4 > 0
Replacing the second and third equ
 the first, we get: 

xααααx
x)α(αααx)α(αααx 44223311

+
+=

 

 1αααααααα 42423131 = (parametric 
equation)                       (34) 

The general solution of the system is: 

+

(x, a3α3x, a4α4x) 
The priority vector is: [1, a3α3, a4α4]. 
Consider the
α1 = α2 = α3 = α4 = α > 0 we get: 

4231 αααα +
2 1α =  so, 

4231 αααα +
i) If α ∈  [0,1], then α is the degree of 

consistency of the p

1α = . 

roblem, while β = 1 − α is 
the degree of the inconsistency of the problem. 

When the degree of consistency → 0, the 
degree of inconsistency → 1, and reciprocally. 

  
nd β → 1. 
icular Example 7 

lar case when α1, α2, α3, 
4 1 2 3 4 big: α1 = 50, α2 = 20,       
α3 =

ii) If α > 1, then 1/α is the degree of 
consistency, while β = 1 − 1/α is the degree of 
inconsistency. 

Discussion of the General Example 6 
Suppose the coefficients α1, α2, α3, α4 

become big such that α1α2 + α3α4 → ∞, then  
α → 0, a

Part
Let’s see a particu

α  make α α  + α α
 100, α4 = 250, then  

01.0
100

1
10000

1
2502010050

1
===

⋅+⋅
=α

= 
e of inconsistency. 

r Particular Example 
7 

degree of consistency, whence β = 0.99 
degre

The priority vector fo
is [ ] [ ]5.211)01.0(250)01.0(1001 =  

which normalized is: ⎥⎦
⎤

⎢⎣
⎡

9
5

9
2

9
2 . 

Particular Exam
Another case whe

ple 8 
n α1, α2, α3 α4 make the 

expression α α  + α3α4 tiny positive number: 
 0.05, α3 = 0.0

, 
1 2

α1 = 0.02, α2 = 3, α4 = 0.02, 
then 

25
04.0
1

)02.0(05.0
1

==
+

Then 1/α = 1/25 = 0.04 is the degree  
of  consistency  of  the  problem,  and  0.96 the 
degree of inconsistency. 

The priority vector for example 5.2 is 

)03.0(02.0
=α  > 1. 

       

[ ] [ ]
[ ]50.075.01

)02.0(05.0)250.01aa1 43 ==αα
 

which n

(3

ormalized is ⎥⎦
⎤

⎢⎣
⎡

9
3

9
3

9
4 . 

Let’s verify: 75.0
9/4
9/3

x
y

==  instead of 

0.03, i.e. α = 25 times larger (or 2500%); 

50.0
9/4
9/2z

x
==  instead of 0.02, i.e. 25 la

x = 0.50y +1.25z instead of x = 0.02y + 0.05z 
(0.50 is 25 times larger than 0.02, and 1.25 is 
25 times larger than 0.05) because 

rger; 

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

9
225.1

9
350.0

9
4 . 

 
8. JEAN DEZERT’S WEAK 

NSISTEN

8.1. Weak con nt 
Exampl 2, α3 > 0 be the 
parameters. e

INCO T EXAMPLE 
 

Jean Dezert’s In siste
e 9. Let α1, α

 Th n: 

⎪
⎪
⎪

⎩

⎪⎪
⎪
⎧ = 13α

x
y (35) 

 
(36) 
 

⎨

=

=

3

2

5α
z
y

4α
z
x  

(37) 
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2121 12αy)(4α)(3αxy(36)), =⇒⋅=⋅⇒
zzx

35( α

In order for 2112α
z
y

α=  to be consistent with 

35α
z
=  we need to have 2112α α = 35α  or  y

212.4α α = 3α  (parametric equation)       (38) 
Solving this system: 

⎪⎩z 3
⎪
⎪

⎪⎪
⎪

⎨

⎧

=⇒=

=⇒=

=⇒=

zα12αy5αy

z4αx4α
z
x

x3αy3α
x
y

21

22

11

                     (39) 

we
z)z5(2.z4α 22                    (40) 

General normalized priority vector is: 

 get the general solution: 
[ ]
[ ]zzα12αz4α 212

α4α1   

⎥
⎦

⎤
⎢
⎣

⎡
+αα+α+αα+α+αα+ 1124112 212

21

212

2 ααα 1124
α 11244 212

where α1, α2> 0; (  =  ) 
Which α1 and α give the best result? 

to measure it? This is the greatest challeng
α-Discounting Method includes all 

solutions (all possible priority vectors w
make the m

 all 
proportions (i.e. using the Fairness Principle of 
finding the parameters’ numerical values), 

g of all 
thr 36), and

1 2 3    
etric equation (38) becomes  

=  or 

whence 1 1

3α 212.4α α

2 How 
 e!

hich 
atrix consistent). 

Because we have to be consistent with

there should be the same discountin
ee proportions (35), (  (37), whence 
α  = α  = α  > 0                   (41) 
The param
2.4α 1

2
1 α 01)(2.4αα 11 =−  

α  = 0 or α  
12
5

4.2
1

==  

α1 = 0 is not good, contradicting (41). 
now: Our system becomes 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

==

==

==

12
25

12
55

z
y

12
20

12
54

z
x

12
1

12
53

x
y

 

We see that (42) and 

5

(43) together give 

1212zx
2015xy
⋅=⋅  or 

12z
25y

=  

so, they are now consistent with (44). 

From (43) we get z
12
20x = and from (44) 

we get z
12
25y = . 

The priority vector is: 

⎥⎦
⎤

⎢⎣
1zz

1212
 

which is normalized to: 

⎡ 25z20

57
12

57
25

57
20  

321 CCC  
T

57
122520

⎥
⎤

⎢
⎡      

5757 ⎦⎣
                 (45) 

321 C      C      C  

[ ]T2105.04386.03509.0≅  
C2 value represents the highest priority. 
Let’s study the result: 

321 CCC  
T

57
12

57
25

57
20

⎥⎦
⎤

⎢⎣
⎡  

[ ]zyx  
Ratios:  

1.25
20
25

x
y

==  instead of 3 

61.
3
5

12
20

z
x

===  instead of 4 

32.08
12
25

z
y

==  instead of 5 

Per ngcentage of Discounti : 

6.41
12

20
1 =α== % 5

25

3

6.41
12
5

20

4
12

1 =α== % (42) 
 
(43) 
 6.41

12
5

5
12
25

1 =α== % 

Hence all original proportions, which were 
respectively equal to 3, 4, and 5 in the 
pro tiplication with blem, were reduced by mul

(44) 
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the same factor α1 = 5/12 i.e. by getting 41.6% 
of each of them. 

So, it was fair to reduce each factor to the 
same percentage 41.6% of itself. 

But this is not the case in Saaty’s method: 
its normalized priority tor is  vec

    321 C      C      C  

[ ]T2105.04386.03509.0  
           x            y             z 
Where: 

Ratios:  

2.2406
0.2797x

≅=  instead of 3 y

 38 

0.6267

2.9882
0.0936
0.2797

z
x

≅=  instead of 4 

6955.60.6267y
≅=  instead of

0.0936z
Percentage of Discounting: 

 5 

6867.74
3

2406.2
≅ % 

7050.749882.2
≅ % 

4

9100.133
5

6955.6
≅ % 

Why, for example, the fir
ich was equal to 3, was 

st proportion, 
wh discounted to 
74.6867% of it, while the second proportion, 
which was equal to 4, was discounted to 
another percentage (although close) 74.7050% 
of it?

        

tem (42) has 
nl

homogeneous 
parameterized linear system (46) has a triple 
infinity of solutions. This method is an 
extension of Saaty’s method, since we have 
the possibility to m nipulate the para
α2 and α3. For example, if a second source tells 
us that x/z has to be discounted 2 times as 
much as y/x, and y/x should be discounted 3 
tim we set α2 = 2 α1, and 
res 3 nd the original (35), 
(36), (37) system becomes: 

⎩

⎪
⎧

=α==
==
=

113

2

1

α3/53/55αz/y
44αz/x

3αx/y

and we solve it in the same way. 
 

8.2. Weak Inconsistent Example 10. 
Let’s complicate Jean Dezert’s Weak 

Inc  with one more 
preference: C2 is 1.5 times as much as C1 and 
C3 together. The new system is: 

⎧
=
=

4z/x
3x/y

=++
∈

1zyx
0,1zy,x,

4
                         (50) 

 
Even more dough we have for the third 

proportion’s coefficient, which was equal to 5, 
but was increased to 133.9100% of it, while 
the previous two proportions were decreased; 
what is the justification for these? 

That’s why we think our α-D/Fairness-
Principle is better justified. We can solve this 
same problem using matrices (35), (36), (37) 
can be written in another way to form a linear 
parameterized homogeneous linear system: 

⎪
⎩

⎪
⎨

⎧

=α−
=α−
=−α

0z5y
0z4x
0yx3

3

2

1

                                       (46) 

Whose associated matrix is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

z5α10
z4α01

013α
P

3

2

1

1   (47) 

a) If det(P1) ≠ 0 then the sys
o y the null solution x = y = z = 0. 

b) Therefore, we need to have det(P ) 1 = 0, 
or  (3 α1)(4 α2) - 5 α3 = 0, or 2.4 α1 α2  - α3 = 0, 
so we get the same parametric equation as 
(38). 

In this case the 

a meters α1, 

es less than y/x, then 
pectively α  = α1/3, a

( ) ( )⎪
⎨ = 11 8α)(2α          (48) 

onsistent Example 6.1

[ ]⎪
⎪

⎪⎪
⎨

∈
+=

=

0,1zy,x,
z)1.5(xy

5z/y
                      (49) 

⎪
⎪
⎩ =++ 1zyx
We parameterized it: 
⎧ = 3αx/y 1

⎪
⎪

 ⎪
⎪
⎪
⎪

⎨ +=
=
=

z)(x1.5αy
5αz/y
4αz/x

3

2

        
[ ]

⎪
⎪
⎪
⎪

⎩
4321 α,α,α,α > 0 

Its associated matrix is: 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎣1.5α
⎢
⎢
⎢

−
−
−

−

=

44

3

2
2

1.5α1
5α10
4α01
01

P     

The rank of matrix P2 should be strictly 
less than 3 in order for the system (5
non-null solution. 

If we take the first three rows in (51) we 
get trix P1, whose determinant should be 

fore one also gets the previous 
parametric equation 2.4α1α2 = α . 

rows 1, 3, and 4, since they all 
involve the relations between C2 and the other 
criteria C1 and C3 we get 

⎢
⎡

−
−

−
=

44

3

1

3

1.5α1α
5α10
013α

P          (52) 

Whose determinant should also be zero: 
 det ) = 

⎡ 13α

     (51) 

0) to have 

 the ma
zero, there

3
If we take 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎣1.5

(P3 0])(.5α3α 5α)(1.5α[ 4341 ++

31 =αα

– 

015
5.75.4]0)5(30[ 434131 −αα+αα=+αα+

    (53) 

If we take 
⎤

⎢
⎢
⎢
⎡

−
−

= 35α10
24α01

4P          (54) 
⎥
⎥
⎥

⎦⎣ − 41.5α141.5α

Then 
  det(P4) = 0]5αα6α[0]01.5α[ 3424 ++−−++  

01.5αα12αα6α 42142 =+−=          (55) 
If we take 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

44

2

1

5

1.5α11.5α
4α01
013α

P                    (56) 

Then  
det(P5) = 2142 2α1[0]600[ α+−αα++ – 

= ]1.5 4α 426 αα + 212α1 α – 41.5α = 0         (57) 
So, these four parametric equations form a 

which should have a non-null solution. 

If w  0 as 
we got ing all 
α’s into the last three equations of the system 
(58

parametric system: 

⎪
⎧

=−+
=−

0α15αα7.5αα4.5α
0αα2.4α 321

⎪
⎪
⎩

⎪
⎨

=+−
=−+

01.5αα12αα6α
05αα6α1.5α

42142

3424

314341        (58) 

e consider α1 = α2 = α3 = 12/5  >
 at the beginning, then substitut

) we get: 

48
2530.5208α

0
12
5

12
515α

12
7.5α

12
4.5 44 −+

5

4 ==⇒

=
 

5

35208.0α0
12
55α

12
56α5.1 444 =⇒=−+  

35208.0α0α5.1
12
5

12
512α

12
56 444 =⇒=+−

α4 could not be equal to α1 = α2 = α3 since it is 
an extra preference, because the number of 
rows was bigger than the num

So the system is consistent, having the 
sam

ber of columns. 

e solution as previously, without having 
added the fourth preference y = 1.5(x + z). 

 
9. JEAN DEZERT’S STRONG 
INCONSISTENT EXAMPLE 

 
9.1. Jean Dezert’s Strong Inconsistent 

Example 11 
The preference matrix is: 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞⎛ 1

⎜
⎜
⎜

⎜

⎝

=

1
9

9

91
9

9
91

M1                       

so, 

⎜
⎜ 1 (59) 

1

⎪
⎩

⎪
⎨ <=

y

zxz,1x               (60) 

The other three equations: y = 1/9x, z = 9x, 

ones, so we c

⎧ >= yx9y,x

<= zy9z,
9

        

z = 1/9y result directly from the previous three 
an eliminate them. 

From x > y and y > z (first and third above 
inequalities) we get x > z, but the second 
inequality tells us the opposite: x < z; that’s 

strong contradiction/ 
   

we ction 
again. 

Parameterize: 

why we have a 
inco three  nsistency. Or, if we combine all 

 have x > y > z > x… strong contradi

(61) 
 
(62) 
 
(63) 
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⎪
⎩ α= z9y

9
3

Where: α

 40 

⎪
⎨

⎧

α=

α=

z1x

y9x

2

1

 

e get:

1, α2, α3 > 0. 

From (61) w  x
9α1

1y = , from (62) 

we get x
9α

1 replaced in (63) z
2

= , which is 

and we get: x
αα 22

3
81α

x99αy 3== . 

So x
9α
1

1
= x

α
81α

2
r α3 o 2 = 729α1α3 

(parametric equation)           (64) 
The general solution of the system is: 

⎟⎟
⎠

⎜
⎝

x
α

x
9α

x
21

         (65) 

The general priority vector is: 

⎞  ⎜
⎛ 91

⎥
⎦

⎤
⎢
⎣ 21 α9α
1

Consider the fairness prin
α  

⎡ 91  

ciple, then    
1

cu omes 

     
= α2 = α3 = α > 1 are replaced into the 

parametric equation: α = 729α2, whence α = 0 
(not good) and .9/1729/1 3==α  

The parti lar priority vector bec
[ ]42 99  =  and norm1 alized [ ]6561811

⎥⎦6643
Because the consistency is: 

α = 

⎤
⎢⎣

6561
6643

81
6643

1 . ⎡

00137.01
=  is extremely low, we 

can regard this solution (and the 
inconsistency is very big β = 1 − α = 0.99863). 

 

729
dis

ncy of the system 
wil

Then α = 

9.1.2. Remarks: 
a) If in M1 we replace all six 9’s by a 

bigger number, the inconsiste
l increase. Let’s use 11.  

311
1 = 0.00075 (consistency), 

while inconsistency β
b) But if in M1 we replace all 9’s by the 

smaller positive number greater than 1, the 
consistency decreases. Let’s use 2.  

 = 0.99925. 

Then α = 32
1  = 0.125 and β = 0.875. 

c) Consistency is 1 wh
9’s 

en replacing all six 

a six 9’s by a positive 
sub unitary number, consi
again. For example, replacing by 0.8 we obtain          

α = 

by 1. 
d) Then, repl cing all 

stency decreases 

38.0
(consistency) and β = 0.488 (inconsistency). 

 
.2. Jean Dezert’s Strong Inconsisten

1 = 1.953125 > 1, whence 1/α = 0.512 

t 
Ex

9
ample 12 
The preference matrix is: 

⎟
⎟
⎟
⎟
⎟
⎟

⎜
⎜

5
51 ⎞⎛ 1

⎠
⎜
⎜
⎜
⎜

⎝

=

1
5
15

51
5
1M1                       (66) 

Which is similar to M1 where we replace all 
six 9’s by 5’s. α = 

35
β = 0.992 (inconsistency). 

1 = 0.008 (consistency) and    

The priority vector is: 
[ ]42 551  = [ ]625251  and normalized 

⎥⎦
⎤

⎢⎣
⎡

651
625

651
5

651
1 . 

M2 is a little t 
because 0.00800 > 0.00137, but still not 
enough, so this result is also discarded. 

 
G liz
n en

Genera
Let the 

 more consisten than M1 

9.3. enera ation of Jean Dezert’s 
ng I consist t Examples 

l Example 13 
preference matrix be: 

Stro

⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜

⎝

=

1
t
1t

t1
t
1M t            (67) 

with t > 0 , and c(M

⎟
⎟
⎞

⎜
⎜
⎛

t
1t1

t
→

 and =  

t) the consistency of Mt, 
i(Mt) inconsistency of Mt. 

We have for the Fairness Principle: 

=1)c(Mlim
t 1 1t→

0)i(Mlim t
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0)c(Mlim t
t

=
∞→

 and 1)i(Mlim t
t

=
∞→

        (68) 

0)c(Mlim =  and 1)i(Mlim =t
0t→

t
0t→

Also α = 

 

3t
1 , the priority vector is 

[ ]421 tt  which is normalized as 

⎥
⎥
⎦++++++ 424242 tt1tt1tt

. 

In such situations, when we get str g 
contradiction of the form x > y > z > x or 
similarly x < z < x, etc. and the consistency is 
tiny, we can consider that x = y = z = 1/3 (so 
no criterion is preferable to the other – as in 
Saaty’s AHP), or just x + y + z = 1 (which 
means that one has the total ignorance too:   
C1 ∪  C2 ∪  C3). 

 
10. STRONG INCONSISTENT  

EXAMPLE 
 
Let C = {C1, C2}, and P = {C1 is 

important twice as much as C2; C2 is 
important 5 times as much as C1}.  

Let m(C1) = x, m(C2) = y. Then: x = 2y 
and y = 5x (it is a strong inconsistency s

⎤

1
on

ince 
fro

⎢
⎢
⎣

⎡ 42 tt1

m the first equation we have x > y, while 
from the second y > x). 

Parameterize: x = 2α1y, y = 5α2x, whence 
we get 2α1 = 1/(5α2), or 10α1α2 = 1. 

If we consider the Fairness Principle, then 
α1 = α2 = α > 0, and one gets α = 1010 ≈ 
31.62% consistency; priority vector is    
[  
b  
neutrosophic logic): we t the 
pre h

n making 
pro

2, and 5 > 2. 

ould be in 
suc

two 
coe

le. 

11. NON-LINEAR/LINEAR EQUATION 
M LE 

}, m(C1) = x,       
( 2) = y, m(C3) = z. Let F be: 

 
produ

2. C2 is five ch important as 
C3

on vector of this mixed system 
is: 

 > z, since 5z > z 
for

we get: [10z 5 1]. 
 

   
0.39 0.61], hence y > x. An explanation can
e done as in paraconsistent logic (or as in

 consider tha
ferences were onest, but subjective, 

therefore it is possible to have two 
contradictory statements true simultaneously 
since a criterion C1 can be more important 
from a point of view than C2, while from 
another point of view C2 can be more 
important than C1. In our decisio

blem, not having any more information and 
having rapidly being required to take a 
decision, we can prefer C2, since C2 is 5 times 
more important that C1, while C1 is only 2 
times more important than C

If it’s no hurry, more prudent w
h dilemma to search for more information 

on C1 and C2. If we change Example 14 under 
the form: x = 2y and y = 2x (the 

fficients set equal), we get α = ½, so the 
priority vector is [0.5 0.5] and decision-
making problem is undecidab

 

IXED SYSTEM EXAMP
 
Let C = {C1, C2, C3

m C
1. C1 is twice as much important as the

ct of C2 and C3. 
 times as mu

. 
3. C1 is less important than C3. 
We get the system: x = 2yz (non-linear 

equation) and y = 5z (linear equation). The 
general soluti

[10z2 5z z], where z > 0. 
A discussion is necessary now. 
a) You see for sure that y
 z strictly positive. But we don’t see 

anything what the position of x would be? 
b) Let’s simplify the general solution 

vector by dividing each vector component by  
z > 0, thus 

If z∈(0, 0.1), then y > z > x. 
If z =

 
 0.1, then y > z = x. 

If z∈  (0.1, 0.5), then y > x > z. 

ssume that a new preference 
com s in (in addition to the previous two 
preferences): 

ixe w: x = 2yz 
(non-linear e
and

     

If z = 0.5, then y = x > z. 
If z > 0.5, then x > y > z. 
 

12. NON-LINEAR/LINEAR EQUATION/ 
INEQUALITY MIXED SYSTEM 

EXAMPLE 
 
Since in the previous Example 15 have 

many variants, a
e

The m d system becomes no
quation), y = 5z (linear equation),  

 x < z (linear inequality). 
The general solution vector of this mixed 

system is: [10z2 5z z], where z > 0 and  
10z2 < z. From the last two inequalities we get 
z ∈  (0, 0.1). Whence the priorities are:             
y > z > x. 
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13. FUTURE RESEARCH 

 
To investigate the connection between α-D 

MCDM and other methods, such as: the 
tec

analysis (DEA). 

 

mu

line
m

pos
nul
par

valu
her

pinion on Discounting, or setting a 
Consistency (or Inconsistency) Threshold). 
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